R g 4

-

7 LG86

NACA TN 3571

i

N ‘G.jlvx Auvyar Hoay

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

o

i

TECHNICAL NOTE 3571

LIFT HYSTERESIS AT STALL AS AN UNSTEADY
BOUNDARY-LAYER PHENOMENON
By Franklin K. Moore

Lewis Flight Propulsion Laboratory
Cleveland, Ohio

Washington
November 1955

- -
Ny s -
,‘;\ g) ! ] !
S
FAEEN L
EITIINITS SR s s e

J & duueutu . _Us




BLLE

CFr-1

TEGH LIBRARY KAFB, NM

(UMM

00bL538

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECENICAL NOTE 3571

LIFT HYSTERESIS AT STALL AS AN UNSTEADY
BOUNDARY -LAYER PHENOMENON

By Frenklin K. Moore

SUMMARY

Analysis of rotating stall of compressor blade rows requires specil-
flcation of a dynamic 1ift curve for the airfoll sectlion at or near
stall, presumably including the effect of 1ift hysteresis. Considera-
tion of the Magnus 1lift of a rotating cylinder suggests performing an
unsteady boundary-layer calculation to f£ind the movement of the separa-
tion points of an airfoil fixed in a stream of varilable incidence. Then
consideration of the shedding of vorticity into the wake should yield
an estimate of 1ift increment proportional to time rate of change of
angle of attack. This increment is the amplitude of the hysteresis
loop.

An approximate analysis is carried out according to the foregoing
ideas for a 6:1 elliptic airfoil at the angle of attack for maximmm
1lift. The assumption of smell perturbations from meximum 1ift is made,
permlitting neglect of distributed vorticity in the wake. The calculated
hysteresis. loop is counterclockwise. The computed increment of 1ift
coefficient is quite large, indicating epprecisble unsteady 1ift hyster-
eslis for guite small reduced frequency of flow oscillation. It is
assumed that to the order of this analysis, the wake begins at the
separation point defined by zero shear. This assumption is questionable
for unsteady flow.

Finally, a discussion of the forms of hysteresis loops 1s presented;
and, for small reduced frequency of oscillation, it is concluded that
the concept of a viscous "time lag" is appropriate only for harmonic
variation of angle of attack with time at mean conditions other than
maximum 1ift.
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INTRODUCTION

The phenomena of "stall flutter" and "rotating stall” which may
appear in an axial-flow compressor both involve fluctuations in flow
about blades operating near their aerodynamic stell point; that is, at
an average flow incidence angle near that corresponding to meximim blade
1ift,

The analysis of stall flutter has been held back by uncertainty as
to the dependence of airfoil 1lift and moment on a fluctuating incidence
angle near stall. Mendelson in reference 1 proposed assumption of the
linear aerodynamic force and moment relations appropriate to steady
flow at small angle of incidence, modified by the further assumption
that, as the airfoil oscillates, the forces and moments lag behind the
angular displacement ‘of the airfoll, owlng to viscous effects. Such a
time lag represents an unsteady hysteresis which may provide cyclic
work to amplify or maintain flutter. Perhaps the first experimental
study of 1lift hysteresis was that of Farren (ref. 2). Halfman, Johnson,
and Haley (ref. 3) and Schnittger (ref. 4) have more recently studied
aerodynamic hysteresis experimentally and have presented empirical anal-
yses of their results.

An analysis of rotating stall (e.g., that of Sears, ref. 5) also
requires specification of a dynamic lift-incidence relation (or the
equivalent, as in the study of Emmons, Pearson, and Grant, ref. 6, and
in Marble's analysis, ref. 7). Sears has adopted Mendelson's phase-lag
hypothesis, and this phase angle is an undetermined parameter of his

analysis.

The concept of viscous time lag is not entirely satisfactory,
however, partly because the phenomenon itself is unexplained, but chiefly
because the concept obviously cannot describe a 1ift-hysteresis loop
which might occur at a nominal condition of maximum 1ift.

The phenomenon of aerodynamic hysteresis presumably depends, at
least in part, on the airfoil boundary layer. Also, in this study,
hysteresis is taken to be a fundamentally unsteady phenomenon, not ex-
plainable by consideration of the steady or quasi-steady boundary layer.
In the present report, consideration is given to the Incompressible
flow field @bout a single airfoil fixed in a flow of oscillating

Ipirfoils with 1ift curves which break sharply at stall may show
1ift hysteresis in steady flow, a phenomenon distinet from that under
study herein.
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incidence, under the assumption of an unsteady but nearly quasi-steady2
laminer boundary layer. (This sort of boundary layer is analyzed in
ref. 8.) The analysis of this flow field is undertaken in order to gain
an understanding of the cause of 1ift hysteresis and to describe its
form and (crudely) its magnitude for a speciel airfoil at meximum 1ift.

The basic quasi-steady flow to be used in the present analysis is
provided by Howarth's enalysis (ref. 9) of the way the laminar boundary
layer (end hence circulation) about an infinite elliptic cylinder de-
pends on angle of attack, applied at a condition of maximum 1ift. In
reference 9, Howarth mekes assumptions under which his result becomes
quantitatively inaccurate, though both the approach and the result are
qualitatively instructive. The same limitations affect the present
analysis.

Holding the airfoil fixed while the flow direction oscillates sim-
ulates the accepted picture of rotating stall, in which successive blade
passages stall progressiyely along a perfectly rigid cascade. The some-
what different case of an oscillating airfoil in a uniform stream, which
is appropriate to the stall flutter problem, is not analyzed in this
report. However, there is an example in the "oscillating airfoil" cate-
gory which illustrates the considerations underlying the present study;
nemely, the rotating circular cylinder in a uniform stream. If a circu-
lar cylinder is fixed in & uniform stream, it of course experiences no
1ift. Further, if it is given an anguler displacement, its 1ift does not
change, but remains zero. Thus, this degenerate "airfoil" mey be said to
be in a stall condition, at maximum 1ift, in fact. Now, if the circular
cylinder is given a constant angular velocity of rotation sbout its axis,

"then a circulation develops and an aerodynamic force (Magnus force)

transverse to the flow direction is exerted. If the stream velocity is
from left to right and the rotation is clockyise, then the force is up-
ward (1ift). If the rotation is counterclockwise, the force is
downward.

This phenomenon is explained (ref. 10, par. 27} by consideration of
the boundary layer. In the case of clockwise rotation, the upper surface
of the cylinder is moving with, and the bottom surface against, the flow.
Consequently, if circulation remains zero, the boundary layer separates
later on the top and sooner on the bottom than is the case when the cyl-
inder is not rotating. On the top, later separation means that the
velocity outside the boundary layer is lower at separation. Now, the
separation point signifies the beginning of a wake. Therefore, the

2In a quasi-steady flow, quantities vary slowly enough so that
steady-state results apply at each instant of time although slight
variations are permitted from one instant to the next.
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clockwise vorticity shed into the wake, being proportional to the local
outer velocity, is less on the top, and the counterclockwise vorticlty
shed at the bottom separation is greater, than in the case of no
rotation.

Therefore, owing to clockwise rotation, a net increase of counter-
clockwise vorticity is shed. By the law of conservation of circulation,
the circulation therefore cannot be zero, and a clockwise circulation
must develop sbout the airfoll to compensate for the shed vorticity.
According to classical hydrodynamics, this circulation results in 1lift.

If, instead of rotating steadily, the cylinder undergoes a rota-
tional oscillation, the same considerations apply, if the reduced fre-
quency of oscillation is small. In that case, the oscillating 1lift is
proportional to the instentaneous velocity of rotation. Thus, when the
"angle of attack" of the cylinder is increasing, there is positive 1ift,
and when the angle is decreasing, there is negative 1lift; over a complete
cycle, the curve of 1lift against angle of attack would be a loop.

Therefore, the circular cylinder undergoing a rotational oscilla-
tion exhibits 1lift hysteresis, by reason of the response of the boundary
layer to the movement of the surface. In the more complicated problem
of a noncircular cylinder, or airfoil, similar considerations may be
expected to apply. Of course, in the airfoil problem contemplated in
the present study, the acceleration of the flow field may be expected to
provide an additional component of pressure 1ift, derivable from con-
sideration of Kelvin's impulse. ‘

PRETLIMINARY CONSIDERATIONS
Statement of Problem

Consideration is given to the 1lift of an isolated airfoil in the
form of an infinite elliptic cylinder with a semichord 1 and a thick-
ness ratio B, at a stalling angle of attack a to a stream of velocity
U (see fig. 1). A full list of notation is provided in the appendix.

Holding the airfoil position and the magnitude of U fixed, the
angle of attack o is permitted to vary with time. Such a flow may be
constructed by allowing a moving source @ to approach an airfoil fixed
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in an otherwise uniform stream, the direction of approach being normal
to the stream direction, as in sketch (a):

Q/2nh

h(t)

Ao |
r\' Q

Sketch (a). Airfoil and source

So long as h, the instantaneous distance from Q to the airfoil, is
mich greater than 1, the airfoil finds itself effectively in a uniform
stream of incidence

- .0, _Q
@ = ottt D

and. of megnitude differing from U only to second order in Q/ZnhU.
The rate of change of angle of attack is

Qz ("];1)
2nh“0

Q =

where the dot signifies differentiation with respect to time. The fore-
going model applies qualitatively to the phenomenon of rotating compres-
sor stall, if the moving source @Q 1is taken to represent the approach
of a flow blockege propegating along a cascade.

The present analysis will be carried out as though a 1is & small
constant. Actually, if & is quite small, and higher derivatives such
as a are negligibly small, the analysis will be correct at each instant
using the appropriate instantaneous value of a. (Thig is the first
refinement over the quasi-steady assumption which uses instantaneous
values of a itself; or for oscillatory o, the linear term of a Taylor
series in reduced frequency.) It 1s clear that the solution of the prob-
lem to order a provides a measure of hysteresis: Suppose an expression
for 1lift is obtalned in the form

(0)

C; =C +Amcza+ac + e

2

—_— —— - e e —— e o i S e ————
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The Pirst two terms are the quasi-steady contributions. The term in &
provides that, if « 1is in the process of increasing with time, then
the 1ift is higher (assuming CZ& positive) then the quasi-steady value.

The converse is true if o 1is decreasing. Thus, if o performs an
harmonic oscillation, the 1ift curve is a loop lying to elther side of
" the quasi-steady curve of width proportional to the frequency of
oscilletion.

In order that the present analysis bear on the question of rotating
stall, nominal angle of attack must be selected for which the airfoll
is in a stalled condition. Maximum 1ift is the most simply described
stell condition. Accordingly, the nominal angle of attack is chosen as
that for which the 1ift is a maximum. This selection is made for two
more compelling reasons:

(1) The result will tend to isolate the effect of hysteresis, in-
asmuch as no quasi-steady change in 1ift results from change in o about
the maximim 1ift velue. Of course, if 1ift hysteresis is found under
a mean condition of maximum 1ift, then the idea of viscous time lag will
thereby be shown to be inasppropriate.

(2) Any other assumption would lead to great theoretical complica-
tion. The analysis is to be a perturbation of quesi-steady flow. If,
at the nominal angle of attack, change in a resulted in a quasi-steady
change in circulation, then, to the order of the present analysis,
induced wake effects would require consideration.

Potential Flow

Outside the boundary layer of the ellipse, irrotational incompress-
ible flow is assumed. At each instant,3 the velocity potential on the
surface of the ellipse is (ref. 11, par. 71)

® = 10(L+ B) cos (n-a) - 51 (1)

where the surface is defined by

X=1lcosn; Y=81 sinnq (2)
Along the surface, measuring s clockwise,
_ 39 99 97
ul—gs—=§ﬁ-d—s-
a: -1/2_ 1
a£-= - (sin®n + BZcos?n) / = -z (3)

3The quasi-steady assumption applies precisely for the calculation
of the unsteedy velocity potential.
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o= 1[0+ p) o (1me) + 5] (4)

At this juncture, the condition of maximm 1ift has not been imposed,
and the circulation T 1is left unspecified. Of course, both « and
' may vary with time.

The foregoing description of the potential wvelocity distribution
is made on the assumption that the boundary layer is negligibly thin
everywhere on the ellipse. This assumption is usually quite proper
shead of the separation points. The assumption that the wake aft of
separation does not importantly affect the potential flow is not proper;
certainly, this assumption is quantitatively poor at maximum 1ift, es-
pecially if the potential flow is used to compute separation point.
However, the results obtained on the basis of this assumption are ex-
pected to have qualitative validity.

BOUNDARY -LAYER ANALYSIS
Quasi~Steady Boundary Layer

As a basis for subsequent calculation of unsteady effects, the
quasi-steady laminar boundary layer on the ellipse may be approximately
determined by the Kérmén~Pohlhausen integral method, as improved by
Holstein and Bohlen (see Schlichting, ref. 12, ch. XII). The differen-
tial equation is

&

@_r, .,

ds ~ ] n = ds (58.)
subject to the initial condition at the stagnation point (q = 0):
xg = 0.0770 (5b)

where Z = GZUfQZ, © being the momentum thickness. The function F(x)
is tabulated in reference 12.

Determination of 2 and T at meximum 1ift. - Given the velocity
distribution g, the growth of the boundary layer may be computed from
equations (5), the calculation proceeding until both the seperation
points (§ and s, fig. 1) are reached, for which (x)g = (x)z = -0.1567.

In the present problem the potential velocity distribution has not
yet been fully prescribed, since T vremains unknown. Following Howarth
(ref. 9), suppose that, for a given «, & value of T is assumed, and
the boundary-layer calculation is carried out. Then, at the top separa-
tlon point, clockwise vorticlty is shed into the wake at the rate

o)
u g% dn = % (ui)g (6)
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while at 8§, counterclockwise vorticity is shed at the rate %(ui)s.

—

Now, if (uy); differs from (u;)g, there is a net change of circulation

in the wake, which is not possible in steady flow. Therefore, new trial
values of T must be assumed until the particular value of T 1is de-
termined for which the solution of equations (5) yields separation points
for which (u;)g = (ul)g.

The foregoing procedure must be cerried out for each of a number
of angles of attack in order to determine the vailues of o« and T at
maximim 1ift. In reference 9, Howarth performed these calculations for
B = 1/6 and determined a theoretical 1ift curve. The meximum value of
T/2xU1 was found to be 0.0761 at an angle of attack « = 7°. His com-
plete distribution of Z at this condition is not presented in ref-
erence 9. Accordingly, the calculation has been repeated, by integrating
equation (5a) in the form

T =AM FO)5  x=a(n)z (72)
where
am= -5 am= -2 (70)

and, from equation (4),

q = %E_Bin (n-7°) + 0.076—‘];] (8)

At the forward stagnation point where q = 0, 1, = 190.74°, and the in-
itial condition is, from equations (5), (6), and (72),

Z, = o.o77o/aO = 0.00407 (7¢)
The solution was obtained using a step-by-step method in which a
parabola is passed through two known values and the next unknown value
of dZ/dn, integrating to find Z 1in terms of the unknown dZ/&n, then
applying equation (7a) at the unknown point to solve for dZ/dn. Two
starting values were found from a Taylor series sbout 1g. The step
size in 1 was 10  except near the stagnation and separation point where
finer spacing was used. The solution of Z 1is shown in figure 2 and in
teble I. The separation points, for which x = -0.1567, occurred at
1 = 80.0° and 340.83°. Of course, q should be the same at ¥ and 8.
The difference cited in the taeble indicates the degree of error present
in the calculations.

Determination of 0%Z/da. -~ For subsequent use in the unsteady equa-
tions, it is necessary to know the rate of change of Z with o i1in
quasi-steady flow. At meximum 1ift, when o is changed, the quasi-
steady boundary layer changes, and the locations of the separation points
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are changed. Of course, the velocities at s and & must remain equal,
because OT/Oa = O at maximum 1ift, by definition. '

Differentiating equation (7a) yields

dZ
I = B(n)z + b(n) (9a)
where
=3
B= a F'(X)
(9p)

- S Man
bDE -~ A a F + R F

The initial condition for 2, at 7, 1s determined by specifying that
dZa/dn mist be finite there; from equations (9a) and (9b),

nq@ Zq,, F'
%W 0

In equations (9) a11 quantities are to be evaluated at the condition of
meximim 1ift; the appropriate superscript (0) is omitted for brevity.

Of course, for purposes of finding g and qa in equations (9), the
angle of attack of 7° should be replaced by o in equation (8) and set
equal to 7° again, subsequent to differentiation. Equations (9) have
been integrated to yield Z,, by the same method as described for find-
ing Z, and the result is shown in figure 3 and in table I.

(Zg)g = = -0.00860 (9¢)

Unsteady Boundary Layer

The next step in the analysis is to_ determine the dependence of the
boundary layer on the angular velocity o, assumed smsll. To this order
of approximation, equation (8) describing the potential flow must be
modified to include the possibility of a contribution to circulation in
proportion to o (or, in dimensionless form, € = aZ/U), as follows:

u
= _1_1(7 _70 '
Q= 5= = RE sin(n-7°) + 0.0761 +. 1€ (10)

The coefficient of circulation hysteresis v must be found from a con-
dition of vorticity shedding at the separation points of the unsteady
boundary layer. The contribution to 1ift proportional to @ then fol-
lows. Determination of the proper vorticity-shedding condition will be
discussed in a subsequent section.
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The unsteady form of the Kérmén momentum equation (see ref. 12) is

2 00 (11)

3
E u] 55 - (26 + 5*)u1 gsul = gf (u &%)

Steady equations (5a) and (7a) are obtained from equation (11) by omit-
ting the term on the right side. An iteration procedure might then be
adopted: The quasi-steady &% can be substituted into the right side
of equation (11), and a new solution obtained, to include first-order
unsteady effects. Using the definitions of reference 12, and writing
the time derivative in equation (11) as

3— (u &%) = a,g— (u 5%) (12)
there is found, corresponding to equation (5&),
f!
Z_F() L&, (% 1% 1,
ds q qg 17\a 27 £, @ (13)

The function fl(x)~ is tebulated in reference 12, and gq 1is given by
equation (10). "Again, for purposes of finding and qy,, the angle
7° in equation (10) should temporarily be replaced by «a.

Instead of the indicated iteration, in the present study the equiv-
alent procedure is adopted of finding the coefficients of the expansion

‘o - a0
Z=Z()+Aa.Za+aZe+
The coefficients 2(0) and Z, have already been found (egs. (7) and

(9) and figs. 2 and 3). The derivative Ze remains to be found. Dif-
ferentiating equation (13) and noting that %o = qgZ, + Q%)

az, q Fq z, £ |

€s 3 Ya @

—ds-F(")'~Ze+F' q Z'qz 'ZT E:.—*'zz*f (957 *+ a  2Z)
(14)

In equation (14) and hereinafter, evaluation of quantities in the steady
state at maximum 1ift is to be understood, and the superscript (0) is
omitted for brevity.

It is impossible to ensure a fihite value of dZa/ds at the stag-
netion point because of the second-order pole -2f an/qz. The physical
reason for this result is the fact that, at the stagnation point of a
certain instant, the boundary-layer velocity profile will not vanish,
as in steady flow, but rather will respond to the instantaneous accelera-
tion € more promptly than the outer potential flow. A profile of
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magnitude € may thus be expected, vanishing in the outer streawm as
well as the wall as shown in sketch (b):

/
/

[
Boundary-layer
profile

Stagnation point

Sketch (b). Nose of airfoil
Therefore, the definition of momentum thickness

ao

6 = L ( - E_:>¢y
u u
0 a 1
shows that, if the veloclity u in the boundary layer has a part pro-
portional to u and a part proportional to &, then the part of 6
(and hence of % =8 U]%Z) which is proportional to € must have a
simple .pole in u - Actually, of course, the quantity 6 i1s inappro-~

priate for defining a thickness of a profile of the type shown in sketch

(b), and the appearance of a pole in 6 silmply indicates this lack of
physical significance.

The foregoing considerations suggest that a new variable W De
defined to replace Z;:

W= aZ, (15)

Substituting equation (15) into equation (14) yields

v 9g qe % | Zg 1
G5 (LT T -F & - 207 =gyt 7] (ag2q, + Gug?)
(16)




12 NACA TN 3571

In order that dW/ds be finite at the stagnation point, the two poles
on the right side of equation (16) must cancel, yielding the initial
condition
2f.Z
W = % [ _ _5.001015 (27)

where the numerical value is obtained using equations (3), (7c), and (10),
and the tebles of reference 2. Inasmuch as /R (eq. (10)), the
function W may be split into two parts, as follows

=X+ 1Y (18)

80 that (changing to 7 as independent varisble) equations (16) and (17)
provide

&= cx + c(n) (192)
where
c(n) = (1 +F) —’l (155)
Z I
c(n) = I:q“ > (an + q, Zi'
end
Xy = -0.001015 (19¢c)
%: c(n)Y + a(n) (202)
where
d(n) = % - ZF' E% _(20p)
and
Yy =0 (20c)

Equations (19b) and (20b) are evaluated using the solutions for Z and
Z > the tables of reference 12, and equations (3) and (10).

Solutions of equations (19) and (20), obtained by the method used
to find Z, are presented in figures 4 and 5 and table I.

3778
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DETERMINATION OF LIFT
Unsteady Balance of Shed Vorticity

In order to determine the unsteady pressure 1ift, the coefficient
v (eq. (10)) mst be determined. In steady flow (see the discussion
accompenying eq. (6)), the circulation T was obtained by requiring
that vorticity be shed in equal and opposite amounts at the two separa-
tion points.

In the present unsteady problem, the net rate of vorticity appear-
ance in the wake must vanish, not only in the quasi-steady approximatiomn,
but to order a as well, in view of the assumption that the quasi-
steady circulation is maximum. By the classical theorem concerning con-
stancy of circulation, any net rate of discharge of vorticity into the
wake must be balanced by a rate of increase of circulation about the
body. If the airfoll 1s nominally at maximum 1ift, then the circulation
terms (eq. (10)), to order € = al/U, are

0.0761 + Te

The rate of increase of this expression is at most of order 3, and
therefore there cannot be any net discharge of vorticity to order «.

If the airfoil were not at meximum 1ift, then the expression for
circulation would contain a term proportional to A, which would change
at the rate &, and would have to be balanced by a net rate of vortieity
discharge of order a. In turn, this distribution of circulation in the
weke would induce further modifications of the potential flow. Therefore,
the assumption of maximum 1ift permits the neglect of the induced effects
of distributed circulation in the wake.

Movement of separation points. - In order to effect a balance (to
order a) of vorticity shed at the separation points, the movements of
the separation points must be taken into account. The position of the
top separation point B may be written

e @y o (), ¢ - @

C
The coefficient (gg) is obtained from the quasi-steady solution:
5 .

At separation (% = -0.1567),

52)3 ) -(%%)g

e e
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From equations (7),

g% = - %(qul + Zoa, + % sin 21]) (22a)
?& - 1% (Zagq, + Z,a,) ) (22b)

whence, holding »* <fixed at -0.1567,

_ Z + Z
I e

35
qum + ann A+ ToR sin 27 _

where 2Z- and Za, may be obtairned from table I.

The coefficient (Bﬁ/ae).s_ comes from the unsteady solution:
@), 8
&)= /g

From equations (7),

l -
g = = R (Zcqn + ane)
which, upon substitution of equations (10), (15), and (18), becomes
*q
Xe = - = (X + 1Y) =L+ 398 g5y 2 (24)
R q 7234

Equations (22a) and (24) thus provide that

q a
. 9n (_ﬂ__35Z )
(g_fl) _ |2 g ¥ g - 7aps sl (25)
€/~ 35%
5 Z + Z + == s8in 2 —-
Gn * “q% T 7R PR 4N 3

At tHe bottom stagnation point, equations (21), (23), and (25)
apply, with subscript s replacing subscript ¥.
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Equation of vorticity shed at separation points. - Taking into ac-
count the motion of the separation polnt, the rate of vorticity shedding
at the top is given by the following equation, which replaces equation

(6):

o)
- @ Ee-td-185 e
0
From equations (3) and (21), ~
on . o ol
EIIN S A
) T 37 r &
SN ) P . V) J
5 . 8 s

Equations (27) yield the following expression for the right side of equa-~
tion (26):

o du, 3w (Bu o 3¢ 28
%(ul)§+(ul)§m(an_1£)g+e a_T_liaﬂe.+URa_3§ (28)

Expression (28) represents clockwise vorticity shed at the top separa-
tion point. At the bottom separation point, the amount of counterclock-
wise vorticity shed is also represented by equation (28), if subscripts
E are replaced by s.

Therefore, equating the net discharge of vorticity to zero,

aza )

- Bu o on
l o) ﬂ
35.311—5218' J¢ "'Uléu u‘_lb—) o

J

In the quasi-steady flow, (ul)g = (ul)ﬁ! and the coefficient of Aa must
be zero. .Therefore, the coefficient of & in equation (29) must vanish:

ouy dF 3111511 3T on
(371—3_5)_8_-(57]—3_5'84-{] RB%}E_R&E =0
. 5 5

>(29)

et e e e e ———_ e s -
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or

5q/31 o7 anfa [21/%e (& on/fom)g
R — € @ ~ R on/da)_ T 3
k T )s (éﬁ' ) (an/a )S R om _ 0 ( 0)

Equations (23), (253, and (30) and table I su.ffice to determine y (which

appears in eq. (25) The result is,

T = -s.i (31)

Definition of separation point. - In effect, it has been assumed
that, during the unsteady motion, separation is defined by the condition
of zero shear (% = -0.1567) and the subsequent appearance of reverse
flow relative to the surface, just as in steady flow. This assumption
is open to question. The question is how (or whether) local velocity-
profile characteristics may be interpreted to identify the leading edge
of a wake.

The usual steady criterion, which notes the appearance of reverse
Plow downstream of the point of zero shear, implies that the fluid in
the wake is fixed relative to the body. If, in the unsteady case, the
wake may still be regerded as fixed to the body, then it may be that the
steady criterion is still spplicable.

However, the present assumption of the steady definition of separa-
tion is not advanced with complete confidence. Rather, it is felt that
only a suitable experiment can settle this point.

Lift of Airfoil

The steady 1ift coefficient of the airfoll of figure 1 is deter-
mined from the steady circulation:

c(0) _ pUT
" pUz (21)

% = 21(0.0761) = 0.48 (32)

There are two contributions to 1ift proportional to €. From the un-
steady circulation,

1)

cz( = 21y = -38.6 (33)
(4

and a further contribution is found by consideration of the remainder of

the potential flow. The two components of Kelvin's impulse for the flow

illustrated in figure 1 (leaving circulation out of account) are

Lol = ﬂpUZz(Bzcos a, sin a)
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(See pars. 71 and 123 of ref. ll.) Whence, the corresponding components
of vector force are

I
Fx’Fy = a x& = ﬂpUlza(—stin a, cos o)
and the 1ift is
2. 1+ B° 1 - g®
L=Fcosa - F,eln a = npUl°a, —5— |1l + =———3 c0s 20
J X 2 1 + BZ
The following 1lift coefflicient results:
(2)_ x 2 1-g%
Cyi= 5 (L+B%) [L+ T35 cos 2a |= 3.09 (34)
& 1+ B°
The final expression for 1ift combines equations (32), (33), and
(34):
_ (o) (1) , o(2)
CZ = CZ + € Cze + Cze
= 0.48 - 36 %—Z (35)

The sign of the second term of the result of equation (35) indicates
that, while angle of attack is increasing, the 1ift is lower than the
quasi-steady value, and higher if the angle of attack 1s decreasing.
Thus, near maximum 1ift, the 1lift curve would exhibit a counterclockwise
hysteresis loop enclosing the stall point. This result is perhaps
counter to expectations, because clockwise hysteresis is found experi-
mentally for oscillating airfoils. It may be that different directions
of hysteresis should be expected when the alirfoil oscillates and when,
as in the present study, the stream direction oscillates.

In any cese, it may be shown that the overriding effect producing
counterclockwise hysteresis in the present problem is the quasi-steady
movement of the separation point over the top surface. As this separa-
tion point moves forward under increasing angle of attack, clockwise
vorticity in the boundary layer joins the wake as the separation point
passes. Accordingly, a counterclockwise airfoil circulation (negative
v) is required to balance this effect. The term of equation (26) that
is concerned with this movement is the one involving ds/dt.

For the elliptic airfoil problem treated herein, the quasi-steady
movement of the upper separation polnt is quite extensive; unumerically,
Bﬁ/Ba = 13.9, indicating that the separation point is very loosely fixed
to the airfoil surface. By way of contrast, in the case of the rotating
circular cylinder, there is no effect of this sort, because a change in
angle of attack produces no quasi-steady movement of the separation point
at all. Other contributions to the shedding of vorticity then lead to
the result of clockwise hysteresis for the circular cylinder.
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LIFT HYSTERESIS

The foregoing analysis does not provide a complete theory of un-
steady flow about a stalled airfoil. Rather, the analysis illustrates
the considerations that would underlie such a theory and further make
plausible the general assumption of an expansion of 1ift coefficient in
the form of equation (35). This expansion would be valid for nearly
quasi-steady conditions. Also, it has been shown that a counterclockwise
hysteresis loop may be expected at a nominal condition of maximum 1ift
with, apparently, a large amplitude.

If the foregoing conditions are met, and Ao is simple harmonic,
A o< gin 27 ot (36a)
\then
G - 200 sin (2mot - 90°) (36Db)

Use of relation (36b) in the 1ift formula (35) may be said to correspond
to the assumption (ref. 5) of a positive lift-curve slope and a phase
lag, 90° in this case, though the positive slope would not correspond to
the steady 1ift curve. The hysteresis loop for this case appears as an
ellipse on the 1lift curve of figure 6(a). The amplitude and width of
the loop are assumed small in the present discussion and are exaggerated
in figure 8.

If o is not simple harmonic, then the concept of phase lag is al-
together inappropriate. For example, if o 1s more nearly a “saw-tooth”
function of time (fig. 6(b)), then the 1ift increment is nearly a
"pattlement"” function. The corresponding hysteresis loop is nearly rec-
tangular. If a changes according to an exponential pulse (illustrated
by a Gaussian curve in fig. 6(c)), then the hysteresis loop is egg-shaped,
with the broad end to the right.

CONCLUSIONS
The analysis of rotating stall in an axial-flow compressor requires
specification of a dynamic 1ift curve appliceble near stall. It has
previously been suggested that unsteady 1ift hysteresis 1s an important
characteristic of such a curve.

Consideration of the familiar experimental fact of Magnus 1lift on
a rotating cylinder indicates a theoretical approach to the question of
aerodynamic hysteresis which, though certainly not definitive, may prove
helpful. The accepted explanation of Magnus 1lift is that, if the cylin-
der is in motion toward the left and rotates clockwise, the movement of
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the surface delays boundary-layer separation on the top and advances it
on the bottom. In steady flow, considerations of constancy of wake cir-
culation require that the outer velocity at the two separation points Dbe
equal. The delayed separation at the top implies a lower velocity (vice
versa on the bottom), and a compensatory clockwise circulation must
therefore occur.

The foregoing reasoning is extended to apply to the problem of an
alrfoll of elliptic section in & stream of constant velocity but of
(slightly) oscillating direction. The airfoil is considered to be nom-
inally at meximum 1ift. This assumption, reasonable for unsteady prob-
lems at'nearly stalled conditions, provides an essential simplification.
To first order in small quantities, the 1ift (circulation) increment due
to the oscillation can depend only on rate of change of angle of attack;
and, Just as in the cylinder case, all induced wake effects may be
lgnored.

For purposes of computing the amount of vorticity shed into the
weke, the separation point is identified as the point of vanishing shear,
Just as in steady flow. It is not clear, however, that this assumption
is proper.

Under these various assumptions, the unsteady increment in 1ift
coefficient of the ellipse is found to be -36 &Z/U, of which about 92
percent is due to the unsteady movement of the separation points and the
remainder is due to impulsive pressure. This 1lift increment gives the
amplitude of a lift-hysteresis loop at maximum 1ift. The loop is coun-
terclockwise, a result that can be related to the extremely migratory
tendency of the separation point on the upper surface of the ellipse
under a change in angle of attaeck in steady flow.

Finally, assuming oscillations of low reduced frequency, certain
observations may be made concerning the shapes of hysteresis loops, and
the validity of the idea of a viscous time lag in connection with un-
steady 1lift: If the angle of attack undergoes harmonlc oscillation,
then the 1ift increment is also harmonic with a 90° phase lead or lag,
depending on the sign used in the definition of Cle In this case, the

hysteresis loop is elliptic. If the angle of attack varies in a non-
harmonic manner, then the variation of 1ift does not have the same de-
pendence on time, and the idea of time lag is inappropriate.

Lewls Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, "Ohio, August 17, 1955




20

NACA TN 3571

APPENDIX - SYMBOLS
The following symbols are used in this report:
functions of 1 (eqs. (7))
functions of 7 (egs. (9))
functions of 1 (egs. (19b))
1ift coefficient
rate of change of 1lift coefficient with angle of attack a«
rate of change of 1lift coefficient with o
function of 7 (eq. (20b))
universal function for boundary-layer calculation (eq. (5a))
universal function for boundary-layer calculation (eq. (13))
semichord of elliptic cylinder (fig. 1)
coordinate measured normal to surface (eqs. (6), (36))}
dimensionless outer velocity, EulfU
function of 7 (eq. (3))
dimensioniess coordinate measured along surface of ellipse (fig. 1)
time
stream velocity (a constant)
velocity parallel to surface
function related to unsteady boundary layer (eq. (15)), = qZ¢
function related to unsteady boundary layer (eq. (18))
Cartesian coordinate of surface of ellipse
function related to unsteady boundary layer (eq. (18))

Cartesian coordinate of surface of ellipse
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Z functégg related to momentum thickness of boundaﬁy layer (eq. (52)),
= \-’T ' '

a angle of attack

& time rate of change of «

Aa, increment in angle of attack, = o - a(o)

B thickness ratio of elliptic cylinder

r circulation in outer flow

T coefficient of hysteresis in circulation (eq. (10))

S} over-all thickness of boundary layer

5% displacement thickness,;f boundary layer

& dimensionless anguler velocity, = al/U .

| .coordinate on surface of ellipse (fig. 1, eq. (2))

6 momentum thickness of boundary layer

x function for boundary-layer calculation (eq. (52))

v kinematic viscosity coefficient

p density .

T skin-friction coefficient

o velocity potential

i\ frequency

Subscripts:

8,8 evaluation at top or bottom separation, point, respectively, of
= steady flow at meximm 1ift (o = o(0), ¢ = 0)

0 evaluation at forward stagnation point, where q = 0

1 evaluation at outer edge of boundary layer

evaluation at lower separation point
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Subscript notation is used for partial differentiation where convenient

Superscripts:
(0) steady conditions &t maximum 1ift
(1) unsteady contribution due to movement of separation points
(2) unsteady contribution due to impulsive pressure
- evaluation at upper separation point
! denotes ordinary derivatives
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TABLE I. - RESULTS AT SEPARATION POINTS

Quantity | Separation point (% = -0.1567)
Top (%) Bottom (s)
80.0° 340.83°
R 0.985 0.364
o] 1.210 -1.204
qn 0.139 0.137
Qe 1.192 -7.95
qTm -0.0062 1.49
z 1.1 0.41
Za 13.3 -5.6
z, ~1.405 0.52
X -55.6 -5.4
Y 4.9 -4.2
i
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